On a nonlinear Laplace equation related to the boundary Yamabe problem in the upper-half space

Author:

Yomgne Gael Diebou

Abstract

<p style='text-indent:20px;'>We consider in this paper the nonlinear elliptic equation with Neumann boundary condition</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \begin{cases} \Delta u = a|u|^{m-1}u\, \, \mbox{ in }\, \, \mathbb{R}^{n+1}_{+}\\ \dfrac{\partial u}{\partial t} = b|u|^{\eta-1}u+f\, \, \mbox{ on }\, \, \partial \mathbb{R}^{n+1}_{+}. \end{cases} \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M1">\begin{document}$ a, b\neq 0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ m&gt;\frac{n+1}{n-1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ (n&gt;1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \eta = \frac{m+1}{2} $\end{document}</tex-math></inline-formula> and small data <inline-formula><tex-math id="M5">\begin{document}$ f\in L^{\frac{nq}{n+1}, \infty}(\partial \mathbb{R}^{n+1}_{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ q = \frac{(n+1)(m-1)}{m+1} $\end{document}</tex-math></inline-formula> we prove that the problem is solvable. More precisely, we establish existence, uniqueness and continuous dependence of solutions on the boundary data <inline-formula><tex-math id="M7">\begin{document}$ f $\end{document}</tex-math></inline-formula> in the function space <inline-formula><tex-math id="M8">\begin{document}$ \mathbf{X}^{q}_{\infty} $\end{document}</tex-math></inline-formula> where</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \|u\|_{ \mathbf{X}^{q}_{\infty}} = \sup\limits_{t&gt;0}t^{\frac{n+1}{q}-1}\|u(t)\|_{L^{\infty}( \mathbb{R}^{n})}+\|u\|_{L^{\frac{q(m+1)}{2}, \infty}( \mathbb{R}^{n+1}_{+})}+\|\nabla u\|_{L^{q, \infty}( \mathbb{R}^{n+1}_{+})}. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>As a direct consequence, we obtain the local regularity property <inline-formula><tex-math id="M9">\begin{document}$ C^{1, \nu}_{loc} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \nu\in (0, 1) $\end{document}</tex-math></inline-formula> of these solutions as well as energy estimates for certain values of <inline-formula><tex-math id="M11">\begin{document}$ m $\end{document}</tex-math></inline-formula>. Boundary values decaying faster than <inline-formula><tex-math id="M12">\begin{document}$ |x|^{-(m+1)/(m-1)} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ x\in \mathbb{R}^{n}\setminus\{0\} $\end{document}</tex-math></inline-formula> yield solvability and this decay property is shown to be sharp for positive nonlinearities.</p><p style='text-indent:20px;'>Moreover, we are able to show that solutions inherit qualitative features of the boundary data such as positivity, rotational symmetry with respect to the <inline-formula><tex-math id="M14">\begin{document}$ (n+1) $\end{document}</tex-math></inline-formula>-axis, radial monotonicity in the tangential variable and homogeneity. When <inline-formula><tex-math id="M15">\begin{document}$ a, b&gt;0 $\end{document}</tex-math></inline-formula>, the critical exponent <inline-formula><tex-math id="M16">\begin{document}$ m_c $\end{document}</tex-math></inline-formula> for the existence of positive solutions is identified, <inline-formula><tex-math id="M17">\begin{document}$ m_c = (n+1)/(n-1) $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Reference23 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3