Abstract
<p style='text-indent:20px;'>We consider in this paper the nonlinear elliptic equation with Neumann boundary condition</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \begin{cases} \Delta u = a|u|^{m-1}u\, \, \mbox{ in }\, \, \mathbb{R}^{n+1}_{+}\\ \dfrac{\partial u}{\partial t} = b|u|^{\eta-1}u+f\, \, \mbox{ on }\, \, \partial \mathbb{R}^{n+1}_{+}. \end{cases} \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M1">\begin{document}$ a, b\neq 0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ m>\frac{n+1}{n-1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ (n>1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \eta = \frac{m+1}{2} $\end{document}</tex-math></inline-formula> and small data <inline-formula><tex-math id="M5">\begin{document}$ f\in L^{\frac{nq}{n+1}, \infty}(\partial \mathbb{R}^{n+1}_{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ q = \frac{(n+1)(m-1)}{m+1} $\end{document}</tex-math></inline-formula> we prove that the problem is solvable. More precisely, we establish existence, uniqueness and continuous dependence of solutions on the boundary data <inline-formula><tex-math id="M7">\begin{document}$ f $\end{document}</tex-math></inline-formula> in the function space <inline-formula><tex-math id="M8">\begin{document}$ \mathbf{X}^{q}_{\infty} $\end{document}</tex-math></inline-formula> where</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \|u\|_{ \mathbf{X}^{q}_{\infty}} = \sup\limits_{t>0}t^{\frac{n+1}{q}-1}\|u(t)\|_{L^{\infty}( \mathbb{R}^{n})}+\|u\|_{L^{\frac{q(m+1)}{2}, \infty}( \mathbb{R}^{n+1}_{+})}+\|\nabla u\|_{L^{q, \infty}( \mathbb{R}^{n+1}_{+})}. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>As a direct consequence, we obtain the local regularity property <inline-formula><tex-math id="M9">\begin{document}$ C^{1, \nu}_{loc} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \nu\in (0, 1) $\end{document}</tex-math></inline-formula> of these solutions as well as energy estimates for certain values of <inline-formula><tex-math id="M11">\begin{document}$ m $\end{document}</tex-math></inline-formula>. Boundary values decaying faster than <inline-formula><tex-math id="M12">\begin{document}$ |x|^{-(m+1)/(m-1)} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ x\in \mathbb{R}^{n}\setminus\{0\} $\end{document}</tex-math></inline-formula> yield solvability and this decay property is shown to be sharp for positive nonlinearities.</p><p style='text-indent:20px;'>Moreover, we are able to show that solutions inherit qualitative features of the boundary data such as positivity, rotational symmetry with respect to the <inline-formula><tex-math id="M14">\begin{document}$ (n+1) $\end{document}</tex-math></inline-formula>-axis, radial monotonicity in the tangential variable and homogeneity. When <inline-formula><tex-math id="M15">\begin{document}$ a, b>0 $\end{document}</tex-math></inline-formula>, the critical exponent <inline-formula><tex-math id="M16">\begin{document}$ m_c $\end{document}</tex-math></inline-formula> for the existence of positive solutions is identified, <inline-formula><tex-math id="M17">\begin{document}$ m_c = (n+1)/(n-1) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference23 articles.
1. D. R. Adam.Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa, 25 (1971), 203-217.
2. D. H. Armitage.The Neumann problem for a function harmonic in $ \mathbb{R}^{n}\times (0, \infty)$, Arch. Rational Mech. Anal., 63 (1976), 89-105.
3. J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1976.
4. M. Comte, M. C. Knaap.Solutions of elliptic equations involving critical Sobolev exponents with neumann boundary conditions, Manuscripta math., 69 (1990), 43-70.
5. E. Constantin, N. H. Pavel.Green function of the Laplacian for the Neumann problem in $\mathbb{R}^{n}_{+}$, Libert. Math., 30 (2010), 57-69.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献