Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model
-
Published:2021
Issue:10
Volume:20
Page:3373
-
ISSN:1534-0392
-
Container-title:Communications on Pure & Applied Analysis
-
language:
-
Short-container-title:CPAA
Author:
Chen Huyuan,Hajaiej Hichem
Abstract
<p style='text-indent:20px;'>Our purpose in this paper is to classify the non-topological solutions of equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta u +\frac{4e^u}{1+e^u} = 4\pi\sum\limits_{i = 1}^k n_i\delta_{p_i}-4\pi\sum^l\limits_{j = 1}m_j\delta_{q_j} \quad{\rm in}\;\; \mathbb{R}^2,\;\;\;\;\;\;(E) $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \{\delta_{p_i}\}_{i = 1}^k $\end{document}</tex-math></inline-formula> (resp. <inline-formula><tex-math id="M2">\begin{document}$ \{\delta_{q_j}\}_{j = 1}^l $\end{document}</tex-math></inline-formula>) are Dirac masses concentrated at the points <inline-formula><tex-math id="M3">\begin{document}$ \{p_i\}_{i = 1}^k $\end{document}</tex-math></inline-formula>, (resp. <inline-formula><tex-math id="M4">\begin{document}$ \{q_j\}_{j = 1}^l $\end{document}</tex-math></inline-formula>), <inline-formula><tex-math id="M5">\begin{document}$ n_i $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ m_j $\end{document}</tex-math></inline-formula> are positive integers. Denote <inline-formula><tex-math id="M7">\begin{document}$ N = \sum^k_{i = 1}n_i $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ M = \sum^l_{j = 1}m_j $\end{document}</tex-math></inline-formula> satisfying that <inline-formula><tex-math id="M9">\begin{document}$ N-M>1 $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>Problem <inline-formula><tex-math id="M10">\begin{document}$ (E) $\end{document}</tex-math></inline-formula> arises from gauged sigma models and we first construct an extremal non-topological solution <inline-formula><tex-math id="M11">\begin{document}$ u $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M12">\begin{document}$ (E) $\end{document}</tex-math></inline-formula> with asymptotic behavior</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ u(x) = -2\ln |x|-2\ln\ln|x|+O(1)\quad{\rm as}\quad |x|\to+\infty $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and with total magnetic flux <inline-formula><tex-math id="M13">\begin{document}$ 4\pi (N-M-1) $\end{document}</tex-math></inline-formula>. And then we do the classification for non-topological solutions of <inline-formula><tex-math id="M14">\begin{document}$ (E) $\end{document}</tex-math></inline-formula> with finite magnetic flux. This solves a challenging long standing problem. We believe that our approach is novel and applies to other types of equations.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference33 articles.
1. R. Beeker, Electromagnetic Fields and Interactions, Dover, New York, 1982.
2. A. Belavin and A. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 22 (1975), 245-247.
3. H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $\Delta u = V(x)e^u$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.
4. M. Cantor, Elliptic operators and the decomposition of tensor fields, Bull. Amr. Math. Soc., 5 (1981), 235-262.
5. M. Chae, Existence of multi-string solutions of the gauged harmonic map model, Lett. Math. Phys., 59 (2002), 173-188.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献