Abstract
<p style='text-indent:20px;'>This paper concerns the existence of solutions of the following supercritical PDE: <inline-formula><tex-math id="M1">\begin{document}$ (P_\varepsilon) $\end{document}</tex-math></inline-formula>: <inline-formula><tex-math id="M2">\begin{document}$ -\Delta u = K|u|^{\frac{4}{n-2}+\varepsilon}u\; \mbox{ in }\Omega, \; u = 0 \mbox{ on }\partial\Omega, $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a smooth bounded domain in <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ n\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ K $\end{document}</tex-math></inline-formula> is a <inline-formula><tex-math id="M7">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula> positive function and <inline-formula><tex-math id="M8">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> is a small positive real. Our method is inspired from the work of Bahri-Li-Rey. It consists to reduce the existence of a critical point to a finite dimensional system. Using a fixed-point theorem, we are able to construct positive solutions of <inline-formula><tex-math id="M9">\begin{document}$ (P_\varepsilon) $\end{document}</tex-math></inline-formula> having the form of two bubbles with non comparable speeds and which have only one blow-up point in <inline-formula><tex-math id="M10">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>. That means that this blow-up point is non simple. This represents a new phenomenon compared with the subcritical case.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference22 articles.
1. A. Bahri, Critical Point at Infinity in Some Variational Problem, Pitman Res. Notes math, Ser 182, Longman Sci. Tech. Harlow, 1989.
2. A. Bahri, J. M. Coron.On a nonlinear elliptic equation involving the critical Sobolev exponent: The effet of topology of the domain, Commun. pure Appl. Math., 41 (1988), 255-294.
3. A. Bahri, J. M. Coron.The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal., 95 (1991), 106-172.
4. A. Bahri, Y. Xu., Recent Pregress in Conformal Geometry, ${ref.volume} (2007).
5. A. Bahri, Y. Y Li, O. Rey.On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Cal. Var. Partial Differ. Equ. V., 3 (1995), 67-93.