Author:
Yang Sibei,Yang Dachun,Ma Wenxian
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ n\ge2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}</tex-math></inline-formula> be a bounded NTA domain. In this article, the authors study (weighted) global regularity estimates for Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>. Precisely, for any given <inline-formula><tex-math id="M4">\begin{document}$ p\in(2,\infty) $\end{document}</tex-math></inline-formula>, via a weak reverse Hölder inequality with the exponent <inline-formula><tex-math id="M5">\begin{document}$ p $\end{document}</tex-math></inline-formula>, the authors give a sufficient condition for the global <inline-formula><tex-math id="M6">\begin{document}$ W^{1,p} $\end{document}</tex-math></inline-formula> estimate and the global weighted <inline-formula><tex-math id="M7">\begin{document}$ W^{1,q} $\end{document}</tex-math></inline-formula> estimate, with <inline-formula><tex-math id="M8">\begin{document}$ q\in[2,p] $\end{document}</tex-math></inline-formula> and some Muckenhoupt weights, of solutions to Neumann boundary value problems in <inline-formula><tex-math id="M9">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>. As applications, the authors further obtain global regularity estimates for solutions to Neumann boundary value problems of second-order elliptic equations of divergence form with coefficients consisting of both a small <inline-formula><tex-math id="M10">\begin{document}$ \mathrm{BMO} $\end{document}</tex-math></inline-formula> symmetric part and a small <inline-formula><tex-math id="M11">\begin{document}$ \mathrm{BMO} $\end{document}</tex-math></inline-formula> anti-symmetric part, respectively, in bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, <inline-formula><tex-math id="M12">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula> domains, or (semi-)convex domains, in weighted Lebesgue spaces. The results given in this article improve the known results by weakening the assumption on the coefficient matrix.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference54 articles.
1. P. Auscher, On Necessary and Sufficient Conditions for Lp-Estimates of Riesz Transforms Associated to Elliptic Operators on ${{\mathbb{R}}^{n}}$ and Related Estimates, Memoirs of the American Mathematical Society, 186 (2007), no. 871, 75 pp.
2. P. Auscher, J. M. Martell.Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. General operator theory and weights, Adv. Math., 212 (2007), 225-276.
3. P. Auscher, M. Qafsaoui.Observations on W1, p estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 5 (2002), 487-509.
4. A. Banerjee, J. L. Lewis.Gradient bounds for p-harmonic systems with vanishing Neumann (Dirichlet) data in a convex domain, Nonlinear Anal., 100 (2014), 78-85.
5. A. Barton and S. Mayboroda, Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces, Memoirs of the American Mathematical Society, 243 (2016), no. 1149,110 pp.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献