Abstract
<p style='text-indent:20px;'>The leading-order approximation to a Filippov system <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> about a generic boundary equilibrium <inline-formula><tex-math id="M2">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> is a system <inline-formula><tex-math id="M3">\begin{document}$ F $\end{document}</tex-math></inline-formula> that is affine one side of the boundary and constant on the other side. We prove <inline-formula><tex-math id="M4">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> is exponentially stable for <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> if and only if it is exponentially stable for <inline-formula><tex-math id="M6">\begin{document}$ F $\end{document}</tex-math></inline-formula> when the constant component of <inline-formula><tex-math id="M7">\begin{document}$ F $\end{document}</tex-math></inline-formula> is not tangent to the boundary. We then show exponential stability and asymptotic stability are in fact equivalent for <inline-formula><tex-math id="M8">\begin{document}$ F $\end{document}</tex-math></inline-formula>. We also show exponential stability is preserved under small perturbations to the pieces of <inline-formula><tex-math id="M9">\begin{document}$ F $\end{document}</tex-math></inline-formula>. Such results are well known for homogeneous systems. To prove the results here additional techniques are required because the two components of <inline-formula><tex-math id="M10">\begin{document}$ F $\end{document}</tex-math></inline-formula> have different degrees of homogeneity. The primary function of the results is to reduce the problem of the stability of <inline-formula><tex-math id="M11">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> from the general Filippov system <inline-formula><tex-math id="M12">\begin{document}$ f $\end{document}</tex-math></inline-formula> to the simpler system <inline-formula><tex-math id="M13">\begin{document}$ F $\end{document}</tex-math></inline-formula>. Yet in general this problem remains difficult. We provide a four-dimensional example of <inline-formula><tex-math id="M14">\begin{document}$ F $\end{document}</tex-math></inline-formula> for which orbits appear to converge to <inline-formula><tex-math id="M15">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> in a chaotic fashion. By utilising the presence of both homogeneity and sliding motion the dynamics of <inline-formula><tex-math id="M16">\begin{document}$ F $\end{document}</tex-math></inline-formula> can in this case be reduced to the combination of a one-dimensional return map and a scalar function.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference17 articles.
1. M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications, Springer-Verlag, New York, 2008.
2. M. di Bernardo, A. Nordmark, G. Olivar.Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems, Phys. D, 237 (2008), 119-136.
3. V. I. Bogachev, Measure Theory. Volume I, Springer, New York, 2007.
4. T. Dezuo, L. Rodrigues and A. Trofino, Stability analysis of piecewise affine systems with sliding modes, in Proceedings of the 2014 American Control Conference (ACC)., (2014), 2005–2010.
5. A. F. Filippov., Differential equations with discontinuous right-hand side, Mat. Sb., 51(93): 99–128, 1960.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献