On the stability of boundary equilibria in Filippov systems

Author:

Simpson D. J. W.

Abstract

<p style='text-indent:20px;'>The leading-order approximation to a Filippov system <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> about a generic boundary equilibrium <inline-formula><tex-math id="M2">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> is a system <inline-formula><tex-math id="M3">\begin{document}$ F $\end{document}</tex-math></inline-formula> that is affine one side of the boundary and constant on the other side. We prove <inline-formula><tex-math id="M4">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> is exponentially stable for <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> if and only if it is exponentially stable for <inline-formula><tex-math id="M6">\begin{document}$ F $\end{document}</tex-math></inline-formula> when the constant component of <inline-formula><tex-math id="M7">\begin{document}$ F $\end{document}</tex-math></inline-formula> is not tangent to the boundary. We then show exponential stability and asymptotic stability are in fact equivalent for <inline-formula><tex-math id="M8">\begin{document}$ F $\end{document}</tex-math></inline-formula>. We also show exponential stability is preserved under small perturbations to the pieces of <inline-formula><tex-math id="M9">\begin{document}$ F $\end{document}</tex-math></inline-formula>. Such results are well known for homogeneous systems. To prove the results here additional techniques are required because the two components of <inline-formula><tex-math id="M10">\begin{document}$ F $\end{document}</tex-math></inline-formula> have different degrees of homogeneity. The primary function of the results is to reduce the problem of the stability of <inline-formula><tex-math id="M11">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> from the general Filippov system <inline-formula><tex-math id="M12">\begin{document}$ f $\end{document}</tex-math></inline-formula> to the simpler system <inline-formula><tex-math id="M13">\begin{document}$ F $\end{document}</tex-math></inline-formula>. Yet in general this problem remains difficult. We provide a four-dimensional example of <inline-formula><tex-math id="M14">\begin{document}$ F $\end{document}</tex-math></inline-formula> for which orbits appear to converge to <inline-formula><tex-math id="M15">\begin{document}$ x^* $\end{document}</tex-math></inline-formula> in a chaotic fashion. By utilising the presence of both homogeneity and sliding motion the dynamics of <inline-formula><tex-math id="M16">\begin{document}$ F $\end{document}</tex-math></inline-formula> can in this case be reduced to the combination of a one-dimensional return map and a scalar function.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Reference17 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3