Schatten classes of Volterra operators on Bergman-type spaces in the unit ball

Author:

Liu Junming1,Yuan Cheng1,Zeng Honggang2

Affiliation:

1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, China

2. School of Mathematics, Tianjin University, Tianjin 300354, China

Abstract

<p style='text-indent:20px;'>We devote to studying the condition of a holomorphic function <inline-formula><tex-math id="M1">\begin{document}$ g $\end{document}</tex-math></inline-formula> in the complex unit ball <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{B}_n $\end{document}</tex-math></inline-formula> so that the Volterra operator <inline-formula><tex-math id="M3">\begin{document}$ T_g:A_\alpha^2\to A_\alpha^2 $\end{document}</tex-math></inline-formula> belongs to the Schatten <inline-formula><tex-math id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula>-class. Assuming <inline-formula><tex-math id="M5">\begin{document}$ n\ge2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \alpha&gt;-3 $\end{document}</tex-math></inline-formula>, we get the following conclusions</p><p style='text-indent:20px;'>1. For <inline-formula><tex-math id="M7">\begin{document}$ 0&lt;p\le n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ T_g\in \mathcal{S}_p(A^2_\alpha) $\end{document}</tex-math></inline-formula> if and only if <inline-formula><tex-math id="M9">\begin{document}$ g $\end{document}</tex-math></inline-formula> is a constant. </p><p style='text-indent:20px;'>2. For <inline-formula><tex-math id="M10">\begin{document}$ n&lt;p&lt;\infty $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ p(\alpha+1)+4n&gt;0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ T_g\in \mathcal{S}_p(A^2_\alpha) $\end{document}</tex-math></inline-formula> if and only if</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \int_{\mathbb{B}_n}\left((1-|w|^2)^{n+1+\alpha+2t} \int_{\mathbb{B}_n} \frac{|Rg(z)|^2 \mathrm{d} v_{\alpha+2}(z)}{|1-\langle z, w\rangle|^{2(n+1+\alpha+t)}}\right)^\frac p2 { \mathrm{d} \tau(w)} &lt;\infty, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M13">\begin{document}$ t&gt;\max\{\frac np-\frac{n+1+\alpha}2, \frac{n-1}2\} $\end{document}</tex-math></inline-formula> and and <inline-formula><tex-math id="M14">\begin{document}$ \mathrm{d} \tau(w) = (1-|w|^2)^{-n-1}{ \mathrm{d} v(w)} $\end{document}</tex-math></inline-formula> is the Möbius invariant measure in <inline-formula><tex-math id="M15">\begin{document}$ \mathbb{B}_n $\end{document}</tex-math></inline-formula>. Here <inline-formula><tex-math id="M16">\begin{document}$ \mathrm{d} v $\end{document}</tex-math></inline-formula> is the normalized Lebesgue measure on <inline-formula><tex-math id="M17">\begin{document}$ \mathbb{B}_n $\end{document}</tex-math></inline-formula> so that <inline-formula><tex-math id="M18">\begin{document}$ v( \mathbb{B}_n) = 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}$ \mathrm{d} v_{\alpha+2}(z) = c_{\alpha+2}(1-|z|^2)^{\alpha+2} \mathrm{d} v (z) $\end{document}</tex-math></inline-formula> with a normalized constant <inline-formula><tex-math id="M20">\begin{document}$ c_{\alpha+2} $\end{document}</tex-math></inline-formula> so that <inline-formula><tex-math id="M21">\begin{document}$ v_{\alpha+2}( \mathbb{B}_n) = 1 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some properties of the integration operators on the spaces F(p, q, s);Acta Mathematica Scientia;2023-11-29

2. Inequalities for imaginary parts of eigenvalues of Schatten–von Neumann operators;Rendiconti del Circolo Matematico di Palermo Series 2;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3