Affiliation:
1. Mathematisch Instituut - Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
Abstract
<p style='text-indent:20px;'>In this paper we investigate the long-term behaviour of solutions to the discrete Allen-Cahn equation posed on a two-dimensional lattice. We show that front-like initial conditions evolve towards a planar travelling wave modulated by a phaseshift <inline-formula><tex-math id="M1">\begin{document}$ \gamma_l(t) $\end{document}</tex-math></inline-formula> that depends on the coordinate <inline-formula><tex-math id="M2">\begin{document}$ l $\end{document}</tex-math></inline-formula> transverse to the primary direction of propagation. This direction is allowed to be general, but rational, generalizing earlier known results for the horizontal direction. We show that the behaviour of <inline-formula><tex-math id="M3">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula> can be asymptotically linked to the behaviour of a suitably discretized mean curvature flow. This allows us to show that travelling waves propagating in rational directions are nonlinearly stable with respect to perturbations that are asymptotically periodic in the transverse direction.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献