Author:
Duan Daifeng,Wang Cuiping,Yuan Yuan
Abstract
<p style='text-indent:20px;'>We propose two compartment models to study the disease transmission dynamics, then apply the models to the current COVID-19 pandemic and to explore the potential impact of the interventions, and try to provide insights into the future health care demand. Starting with an SEAIQR model by combining the effect from exposure, asymptomatic and quarantine, then extending the model to the one with ages below and above 65 years old, and classify the infectious individuals according to their severity. We focus our analysis on each model with and without vital dynamics. In the models with vital dynamics, we study the dynamical properties including the global stability of the disease free equilibrium and the existence of endemic equilibrium, with respect to the basic reproduction number. Whereas in the models without vital dynamics, we address the final epidemic size rigorously, which is one of the common but difficult questions regarding an epidemic. Finally, we apply our models to estimate the basic reproduction number and the final epidemic size of disease by using the data of COVID-19 confirmed cases in Canada and Newfoundland & Labrador province.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献