Classification of classical Friedrichs differential operators: One-dimensional scalar case

Author:

Erceg Marko1,Soni Sandeep Kumar1

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Abstract

<p style='text-indent:20px;'>The theory of abstract Friedrichs operators, introduced by Ern, Guermond and Caplain (2007), proved to be a successful setting for studying positive symmetric systems of first order partial differential equations (Fried-richs, 1958), nowadays better known as Friedrichs systems. Recently, Antonić, Michelangeli and Erceg (2017) presented a purely operator-theoretic description of abstract Friedrichs operators, allowing for application of the universal operator extension theory (Grubb, 1968). In this paper we make a further theoretical step by developing a decomposition of the graph space (maximal domain) as a direct sum of the minimal domain and the kernels of corresponding adjoints. We then study one-dimensional scalar (classical) Friedrichs operators with variable coefficients and present a complete classification of admissible boundary conditions.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Reference36 articles.

1. N. Antonić and K. Burazin, Graph spaces of first-order linear partial differential operators, Math. Communications, 14 (2009), 135–155.

2. N. Antonić and K. Burazin, On equivalent descriptions of boundary conditions for Friedrichs systems, Math. Montisnigri, 22-23 (2009-10), 5-13.

3. N. Antonić, K. Burazin.Intrinsic boundary conditions for Friedrichs systems, Commun. Partial Differ. Equ., 35 (2010), 1690-1715.

4. N. Antonić, K. Burazin.Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems, J. Differ. Equ., 250 (2011), 3630-3651.

5. N. Antonić, K. Burazin, I. Crnjac, M. Erceg.Complex Friedrichs systems and applications, J. Math. Phys., 58 (2017), 101508.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3