Author:
Bai Yinsong,He Lin,Zhao Huijiang
Abstract
<p style="text-indent:20px;">This paper is concerned with the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy problem and the initial-boundary value problem in the half space with impermeable wall boundary condition for a scalar conservation laws with an artificial heat flux satisfying Cattaneo's law. In our results, although the <inline-formula><tex-math id="M1">\begin{document}$ L^2\cap L^\infty- $\end{document}</tex-math></inline-formula>norm of the initial perturbation is assumed to be small, the <inline-formula><tex-math id="M2">\begin{document}$ H^1- $\end{document}</tex-math></inline-formula>norm of the first order derivative of the initial perturbation with respect to the spatial variable can indeed be large. Moreover the far fields of the artificial heat flux can be different. Our analysis is based on the <inline-formula><tex-math id="M3">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> energy method.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Applied Mathematics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献