Abstract
<abstract><p>In this article, we proved that each nonlinear higher anti-derivable mapping on generalized matrix algebras is automatically additive. As for its applications, we find a similar conclusion on triangular algebras, full matrix algebras, unital prime rings with a nontrivial idempotent, unital standard operator algebras and factor von Neumann algebras respectively.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. D. Benkovič, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017
2. J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015
3. Z. K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl., 432 (2010), 2615–2622. https://doi.org/10.1016/j.laa.2009.12.006
4. W. L. Fu, Z. K. Xiao, X. K. Du, Nonlinear Jordan higher derivations on triangular algebras, Commun. Math. Res., 31 (2015), 119–130.
5. H. R. E. Vishki, M. Mirzavaziri, F. Moafian, Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc., 31 (2016), 247–259. https://doi.org/10.4134/CKMS.2016.31.2.247