A data-based framework for automatic road network generation of multi-modal transport micro-simulation

Author:

Zhang Qi1,Wang Yukai1,Yin Ruyang2,Cheng Wenyu1,Wan Jian13,Wu Lan3

Affiliation:

1. School of Transportation, Southeast University, China

2. Institute of Transport Studies, Department of Civil Engineering, Monash University, Clayton, Australia

3. Research and Development Center on ITS Technology and Equipment, China Design Group, China

Abstract

<abstract> <p>In microscopic traffic simulation, the fidelity of the road network model has a significant impact on the difference between the simulation and the actual urban traffic state. Accurately matching data on the simulated road network and the surroundings has become a central concern in traffic simulation research. This study provides a multi-source data-based framework for automatic road network generation (ARNG) to address the issue of manual procedures in the creation of the simulated road network and surroundings. First, the proposed method of fusion and matching of diverse road network data is used to acquire the basic road network information, and the combining of the features of different road network data can enhance the authenticity of the basic road network. Second, a multi-modal simulation road network is developed based on multi-modal traffic operation data to serve as the simulation operation's foundational environment. To address the requirements of the dynamic evolution of the simulated road network, an editor for the dynamic road network is built based on spatial closest neighbor matching. The case study illustrates the process of building the simulated road network and environment in the old city zone of Suzhou. Real-world examples demonstrate that the data-based ARNG approach provided in this study is highly automatic and scalable.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Integrated Framework for Real-Time Intelligent Traffic Management of Smart Highways;Journal of Transportation Engineering, Part A: Systems;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3