Platoon-based collision-free control for connected and automated vehicles at non-signalized intersections

Author:

Gong Jian1,Zhao Yuan2,Cao Jinde3,Huang Wei1

Affiliation:

1. Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China

2. College of Information Engineering, Dalian University, Dalian 116622, China

3. School of Mathematics, Southeast University, Nanjing 210096, China

Abstract

<abstract><p>This paper proposes a distributed collision-free control scheme for connected and automated vehicles (CAVs) at a non-signalized intersection. We first divide an intersection area into three sections, i.e., the free zone, the platoon zone, and the control zone. In order to enable the following vehicles to track the trajectory of their leading vehicle in the platoon zone and the control zone, as well as to guarantee the desired distance between any two adjacent vehicles, the distributed platoon controllers are designed. In the control zone, each vehicular platoon is taken as a whole to be coordinated via an intersection coordination unit (ICU). To avoid collision between each pair of the conflicting platoons approaching from different directions, a platoon-based coordination strategy is designed by scheduling the arrival time of each leading vehicle of different platoons. Specially, considering traffic efficiency and fuel economy, the optimal control problem of the leading vehicle is formulated subject to the constraint of allowable minimum arrival time, which is derived from coordination with other approaching platoons. The Pontryagin Minimum Principle (PMP) and phase-plane method are applied to find the optimal control sequences. Numerical simulations show the effectiveness of this scheme.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference35 articles.

1. B. Jeremy, T. Pete, K. Alan, B. Laurie, Y. George, E. Petros, et al., Traffic safety basic facts 2012: junctions, 2013. Available from: https://roderic.uv.es/handle/10550/30218.

2. NHTSA, Fatality Analysis Reporting System (FARS). Available from: http://www.nhtsa.gov/FARS.

3. P. B. Hunt, D. I. Robertson, R. D. Bretherton, R. I. Winton, SCOOT-a traffic responsive method of coordinating signals, 1981. Available from: https://trid.trb.org/view/179439.

4. A. G. Sims, K. W. Dobinson, The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits, IEEE Trans. Veh. Technol., 29 (1980), 130–137. https://doi.org/10.1109/T-VT.1980.23833

5. S. C. Wong, W. T. Wong, C. M. Leung, C. O. Tong, Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control, Abbreviation Title Transp. Res. Part B Methodol., 36 (2002), 291–312. https://doi.org/10.1016/S0191-2615(01)00004-2

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3