Color image steganalysis based on quaternion discrete cosine transform
-
Published:2023
Issue:7
Volume:31
Page:4102-4118
-
ISSN:2688-1594
-
Container-title:Electronic Research Archive
-
language:
-
Short-container-title:era
Author:
Xu Meng1, Luo Xiangyang1, Wang Jinwei2, Wang Hao3
Affiliation:
1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Henan 450001, China 2. Nanjing University of Information Science and Technology, Department of Computer and Software, Nanjing 210044, China 3. Nanjing University of Science and Technology, School of automation, Nanjing 210014, China
Abstract
<abstract>
<p>With the rapid development and application of Internet technology in recent years, the issue of information security has received more and more attention. Digital steganography is used as a means of secure communication to hide information by modifying the carrier. However, steganography can also be used for illegal acts, so it is of great significance to study steganalysis techniques. The steganalysis technology can be used to solve the illegal steganography problem of computer vision and engineering applications technology. Most of the images in the Internet are color images, and steganalysis for color images is a very critical problem in the field of steganalysis at this stage. Currently proposed algorithms for steganalysis of color images mainly rely on the manual design of steganographic features, and the steganographic features do not fully consider the internal connection between the three channels of color images. In recent years, advanced steganography techniques for color images have been proposed, which brings more serious challenges to color image steganalysis. Quaternions are a good tool to represent color images, and the transformation of quaternions can fully exploit the correlation among color image channels. In this paper, we propose a color image steganalysis algorithm based on quaternion discrete cosine transform, firstly, the image is represented by quaternion, then the quaternion discrete cosine transform is applied to it, and the coefficients obtained from the transformation are extracted to design features of the coeval matrix. The experimental results show that the proposed algorithm works better than the typical color image steganalysis algorithm.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Mathematics
Reference36 articles.
1. I. Cox, M. Miller, J. Bloom, J. Fridrich, T. Kalker, Digital Watermarking and Steganography, Morgan Kaufmann, 2007. https://doi.org/10.1016/B978-0-12-372585-1.X5001-3 2. W. Luo, F. Huang, J. Huang, Edge adaptive image steganography based on LSB matching revisited, IEEE Trans. Inf. Forensics Secur., 5 (2010), 201-214. https://doi.org/10.1109/TIFS.2010.2041812 3. E. Kawaguchi, R. O. Eason, Principles and applications of BPCS steganography, in Proceedings of the Photonics East (ISAM, VVDC, IEMB), International Society for Optics and Photonics, 3528 (1999), 464-473. https://doi.org/10.1117/12.337436 4. V. K. Sharma, V. Shrivastava, A steganography algorithm for hiding image in image by improved LSB substitution by minimize detection, J. Theor. Appl. Inf. Technol., 36 (2012), 1-8. Available from: http://www.jatit.org/volumes/Vol36No1/1Vol36No1.pdf. 5. B. C. Nguyen, S. M. Yoon, H. K. Lee, Multi bit plane image steganography, in Digital Watermarking, Springer, (2006), 61-70. https://doi.org/10.1007/11922841_6
|
|