Color image steganalysis based on quaternion discrete cosine transform

Author:

Xu Meng1,Luo Xiangyang1,Wang Jinwei2,Wang Hao3

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Henan 450001, China

2. Nanjing University of Information Science and Technology, Department of Computer and Software, Nanjing 210044, China

3. Nanjing University of Science and Technology, School of automation, Nanjing 210014, China

Abstract

<abstract> <p>With the rapid development and application of Internet technology in recent years, the issue of information security has received more and more attention. Digital steganography is used as a means of secure communication to hide information by modifying the carrier. However, steganography can also be used for illegal acts, so it is of great significance to study steganalysis techniques. The steganalysis technology can be used to solve the illegal steganography problem of computer vision and engineering applications technology. Most of the images in the Internet are color images, and steganalysis for color images is a very critical problem in the field of steganalysis at this stage. Currently proposed algorithms for steganalysis of color images mainly rely on the manual design of steganographic features, and the steganographic features do not fully consider the internal connection between the three channels of color images. In recent years, advanced steganography techniques for color images have been proposed, which brings more serious challenges to color image steganalysis. Quaternions are a good tool to represent color images, and the transformation of quaternions can fully exploit the correlation among color image channels. In this paper, we propose a color image steganalysis algorithm based on quaternion discrete cosine transform, firstly, the image is represented by quaternion, then the quaternion discrete cosine transform is applied to it, and the coefficients obtained from the transformation are extracted to design features of the coeval matrix. The experimental results show that the proposed algorithm works better than the typical color image steganalysis algorithm.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference36 articles.

1. I. Cox, M. Miller, J. Bloom, J. Fridrich, T. Kalker, Digital Watermarking and Steganography, Morgan Kaufmann, 2007. https://doi.org/10.1016/B978-0-12-372585-1.X5001-3

2. W. Luo, F. Huang, J. Huang, Edge adaptive image steganography based on LSB matching revisited, IEEE Trans. Inf. Forensics Secur., 5 (2010), 201-214. https://doi.org/10.1109/TIFS.2010.2041812

3. E. Kawaguchi, R. O. Eason, Principles and applications of BPCS steganography, in Proceedings of the Photonics East (ISAM, VVDC, IEMB), International Society for Optics and Photonics, 3528 (1999), 464-473. https://doi.org/10.1117/12.337436

4. V. K. Sharma, V. Shrivastava, A steganography algorithm for hiding image in image by improved LSB substitution by minimize detection, J. Theor. Appl. Inf. Technol., 36 (2012), 1-8. Available from: http://www.jatit.org/volumes/Vol36No1/1Vol36No1.pdf.

5. B. C. Nguyen, S. M. Yoon, H. K. Lee, Multi bit plane image steganography, in Digital Watermarking, Springer, (2006), 61-70. https://doi.org/10.1007/11922841_6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3