A feature fusion-based attention graph convolutional network for 3D classification and segmentation

Author:

Yang Chengyong12,Wang Jie1,Wei Shiwei3,Yu Xiukang1

Affiliation:

1. School of Information Science and Engineering, Guilin University of Technology, Guangxi 541006, China

2. Network and Information Center, Guilin University of Technology, Guangxi 541006, China

3. School of Computer Science and Engineering, Guilin University of Aerospace Technology, Guangxi 541004, China

Abstract

<abstract><p>Among all usual formats of representing 3D objects, including depth image, mesh and volumetric grid, point cloud is the most commonly used and preferred format, because it preserves the original geometric information in 3D space without any discretization and can provide a comprehensive understanding of the target objects. However, due to their unordered and unstructured nature, conventional deep learning methods such as convolutional neural networks cannot be directly applied to point clouds, which poses a challenge for extracting semantic features from them. This paper proposes a feature fusion algorithm based on attention graph convolution and error feedback, which considers global features, local features and the problem of the features loss during the learning process. Comparison experiments are conducted on the ModelNet40 and ShapeNet datasets to verify the performance of the proposed algorithm, and experimental results show that the proposed method achieves a classification accuracy of 93.1% and a part segmentation mIoU (mean Intersection over Union) of 85.4%. Our algorithm outperforms state-of-the-art algorithms, and effectively improves the accuracy of point cloud classification and segmentation with faster convergence speed.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3