Feature fusion based artificial neural network model for disease detection of bean leaves

Author:

Önler Eray

Abstract

<abstract> <p>Plant diseases reduce yield and quality in agricultural production by 20–40%. Leaf diseases cause 42% of agricultural production losses. Image processing techniques based on artificial neural networks are used for the non-destructive detection of leaf diseases on the plant. Since leaf diseases have a complex structure, it is necessary to increase the accuracy and generalizability of the developed machine learning models. In this study, an artificial neural network model for bean leaf disease detection was developed by fusing descriptive vectors obtained from bean leaves with HOG (Histogram Oriented Gradient) feature extraction and transfer learning feature extraction methods. The model using feature fusion has higher accuracy than only HOG feature extraction and only transfer learning feature extraction models. Also, the feature fusion model converged to the solution faster. Feature fusion model had 98.33, 98.40 and 99.24% accuracy in training, validation, and test datasets, respectively. The study shows that the proposed method can effectively capture interclass distinguishing features faster and more accurately.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Integrated GoogleNet with Convolutional Neural Networks Model for Multiclass Bean Leaf Lesion Detection;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

2. Disease detection in bean leaves using deep learning;Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering;2023-12-29

3. Bean Leaf Disease Classification and Visualization using Deep learning techniques on Sequential Model;2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT);2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3