Data analytics in transport: Does Simpson's paradox exist in rule of ship selection for port state control?

Author:

Tian Simon1,Zhu Xinyi2

Affiliation:

1. School of Economics and Management, Wuhan University, Wuhan 430072, China

2. Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200000, China

Abstract

<abstract> <p>Although previous studies have applied artificial intelligence techniques to improve the accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of Understanding to select ships for inspection. It considers seven features, and each candidate value of a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven features determines the risk level of a ship. The assumption behind the NIR is that ships with values attached with higher weighting points should have more deficiencies. However, this paper finds that Simpson's paradox may exist for this assumption; that is, the average number of deficiencies of ships with values attached with higher weighting points is lower than that of ships with values attached with lower weighting points. Therefore, this paper examines the plausibility of the NIR's weighted-sum method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the features selected by NIR are coupled with each other, so we should not use a simple weighted-sum method to determine the risk level of a candidate ship. Based on the results, we further provide suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3