Estimations and optimal censoring schemes for the unified progressive hybrid gamma-mixed Rayleigh distribution

Author:

Lone Showkat Ahmad1,Panahi Hanieh2,Anwar Sadia3,Shahab Sana4

Affiliation:

1. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

2. Department of Mathematics and Statistics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3. Department of Mathematics, College of Arts & Sciences, Wadi Ad Dawasir (11991), Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

4. Department of Business & Administration, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Abstract

<abstract> <p>Censoring is a common occurrence in reliability engineering tests. This article considers estimation of the model parameters and the reliability characteristics of the gamma-mixed Rayleigh distribution based on a novel unified progressive hybrid censoring scheme (UPrgHyCS), where experimenters are allowed more flexibility in designing the test and higher efficiency. The maximum likelihood estimates of the model parameters and reliability are provided using the stochastic expectation–maximization algorithm based on the UPrgHyCS. Further, the Bayesian inference associated with any parametric function of the model parameters is considered using the Markov chain Monte Carlo method with the Metropolis-Hastings (M-H) algorithm. Asymptotic confidence and credible intervals of the proposed quantities are also created. The maximum a posteriori estimates of the model parameters are acquired. Due to the importance of determining the optimal censoring scheme for reliability problems, different optimality criteria are proposed and derived to find it. This method can help to design experiments and get more information about unknown parameters for a given sample size. Finally, comprehensive simulation experiments are provided to investigate the performances of the considered estimates, and a real dataset is analyzed to elucidate the practical application and the optimality criterion work in real life scenarios. The Bayes estimates using the M-H technique show the best performance in terms of error values.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3