Author:
Wang Yujie,Zheng Enxi,Wang Wenyan
Abstract
<abstract><p>In this paper, the interior inverse scattering problem of a cavity is considered. By use of a general boundary condition, we can reconstruct the shape of the cavity without a priori information of the boundary condition type. The method of fundamental solutions (MFS) with regularization is formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton's method is employed to reconstruct the cavity boundary by satisfying the general boundary condition. This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with the nonlinearity in the Newton's step. Some computational examples are presented to demonstrate the effectiveness of our method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Springer, Berlin, 2019. https://doi.org/10.1007/978-3-030-30351-8
2. F. Cakoni, D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer, Berlin, 2006. https://doi.org/10.1007/3-540-31230-7
3. D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley, Chichester, 1983. https://doi.org/10.1137/1.9781611973167
4. P. Jakubik, R. Potthast, Testing the integrity of some cavity—the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899–914. https://doi.org/10.1016/j.apnum.2007.04.007
5. H. Qin, D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699–708. https://doi.org/10.1016/j.apnum.2010.10.011
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献