Novel lightweight connecting bracket design with multiple performance constraints based on optimization and verification process

Author:

Xie Furong1,Gao Yunkai1,Pan Ting2,Gao De2,Wang Lei2,Xu Yanan3,Wu Chi3

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. Process Research Center, Beiben Trucks Group Co., Ltd., Baotou 014000, China

3. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

<abstract> <p>In this paper, a complete optimization design verification process is proposed and a novel structure of connecting brackets is presented, solving the fatigue failure of chassis connecting brackets operating on harsh roads. First, an endurance road test and fatigue life analysis were applied to the truck equipped with the original brackets, verifying the fatigue damage of the structure. Based on the solid isotropic material with penalization method, a novel lightweight connecting bracket layout was obtained by using the method of moving asymptotes (MMA) for topology optimization under multiple working conditions with multiple performance constraints. Moreover, the derivatives of objective and constraint functions concerning design variables were applied for the MMA. Considering manufacturability and functionality, the improved model based on the topology optimization results was further optimized by size optimization. Finally, fatigue life analysis and an endurance road test were conducted using the optimal design. Compared with the original structure, the novel brackets showed better stiffness, strength and fatigue performance while reducing the total mass by 15.2%. The whole optimization and validation process can provide practical ideas and value for developing multi-performance suspensions in the pre-product development stage.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3