A rational resource allocation method for multimedia network teaching reform based on Bayesian partition data mining

Author:

Li Juan1,Sun Geng23

Affiliation:

1. School of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China

2. School of Computer Engineering, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China

3. Vermilion Cloud, Sydney 2000, Australia

Abstract

<abstract> <p>In order to improve the application of teaching resources and reduce delays in the integration process of multimedia network, a rational resource allocation method for multimedia network teaching reform based on Bayesian partition data mining is proposed. Bayesian partition is used to preprocess the multimedia network teaching resources (MNTR), adjusting the recognition probability of MNTR in each partition based on its attributes. By performing Bayesian quantitative classification using samples of MNTR, the prior probability is adjusted through maximization analysis. The partitioned resources undergo sample data mining to obtain the data category collection of all MNTR. A prediction model is then built to forecast the demand for teaching resources at specific times in the future. MNTR can be rationally allocated based on the prediction results. Experimental results demonstrate that this method reduces delays in MNTR application and improves the accuracy and utilization of teaching resources.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3