Affiliation:
1. Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, China
3. School of Transportation, Southeast University, Nanjing 211189, China
4. College of Art & Design, Nanjing Forestry University, Nanjing 210037, China
Abstract
<abstract>
<p>China has built a nationwide transportation network, but there needs to be a smooth connection and transfer between different modes. Five networks are constructed to explore the characteristics of a multimodal comprehensive transportation network (CNet) in Jiangsu Province based on the optimized modeling method and multisource data. Statistical and robustness characteristics are analyzed for CNet and other single-mode networks including the highway, railway, navigation channel and airway networks (HNet, RNet, NNet and ANet, respectively). The research results show following: (ⅰ) In Jiangsu, CNet, HNet, RNet and NNet are not scale-free networks and do not have small-world properties. However, ANet is the opposite. (ⅱ) The five networks in Jiangsu are robust to the random attack and their robustness changes during the attack. However, their robustness is different under different calculated attacks. For all attack strategies, CNet is the most robust. (ⅲ) In Jiangsu, the three optimized methods enhance the robustness significantly. The network failure is delayed by 12.34, 2.79 and 2.44%, respectively. The average connectivity degree is improved by 265.69, 52.95 and 32.54%, respectively. The more hubs there are with powerful transfer capacity, the stronger the network robustness. The results reveal the key points of the construction of a multimodal comprehensive transportation system and can guide the design and optimization of it.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献