Abstract
<abstract><p>This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in $ \mathbb{R}^n $, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} |f|^{p_1}+a(x)|f|^{p_2}\in L^s(\mathbb{R}^n) \Rightarrow |Du|^{p_1}+a(x)|Du|^{p_2}\in L^s(\mathbb{R}^n)\quad {\rm for \; any} \; s>1 \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>is established for the weak solutions of</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} -{\rm div}A(x, Du) = -{\rm div}F(x, f) \quad {\rm in} \; \mathbb{R}^n, \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>which are modeled on</p>
<p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \begin{equation*} -{\rm div}(|Du|^{p_1-2}Du+a(x)|Du|^{p_2-2}Du) = -{\rm div}(|f|^{p_1-2}f+a(x)|f|^{p_2-2}f), \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ 0\leq a(\cdot)\in C^{0, \alpha}(\mathbb{R}^n), \; \alpha\in (0, 1] $ and $ 1 < p_1 < p_2 < p_1+\frac{\alpha p_1}{n} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958
2. V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin, Heidelberg, 1994. https://doi.org/10.1007/978-3-642-84659-5
3. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503
4. M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9
5. M. Colombo, G. Mingione, Calderón-Zygmund estimates and nonuniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022