Abstract
<abstract><p>Let $ 0 < p, q < \infty $, $ \Phi $ be a generalized normal function and $ L_{p, q}(\Phi) $ the radial-angular mixed space. In this paper, we first generalize the classical Schur's test to radial-angular mixed spaces setting and then find the sufficient and necessary condition for the boundedness of integral operators from $ L_{p_1, p_2}(\Phi) $ to $ L_{q_1, q_2}(\Phi) $ for $ 1\leq p_i, q_i\leq \infty $ with $ i\in\{1, 2\} $. Moreover, we also establish the boundedness of Bergman-type operators $ P_{s, t} $, where $ s\in {\mathbb R} $ and $ t > 0 $, on holomorphic radial-angular mixed space $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $. As an application, we finally solve Gleason's problem on $ H_{p, q}(\Phi) $ for all possible $ 0 < p, q < \infty $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献