Abstract
<abstract><p>In this paper, we study the following Kirchhoff-type system:</p>
<p><disp-formula> <label>0.1</label> <tex-math id="E0.1"> \begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -(a_{1}+b_{1}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx)\Delta u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta}+\varepsilon f(x), \\ -(a_{2}+b_{2}\int_{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v+\varepsilon g(x), \\ (u, v)\in D^{1, 2}(\mathbb{R}^{3})\times D^{1, 2}(\mathbb{R}^{3}), \end{array} \right. \end{equation} $\end{document} </tex-math></disp-formula></p>
<p>where $ a_{1}, a_{2}\geq0, \; b_{1}, b_{2} > 0, \; \alpha, \beta > 1, \; \alpha+\beta = 6 $ and $ f(x), g(x)\geq0, \; f(x), g(x)\in L^{\frac{6}{5}}(\mathbb{R}^3). $ The aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing the variational method. To achieve this, we construct an energy functional and analyze its critical points by applying the Ekeland variational principle, the mountain pass lemma and the concentration compactness principle.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference29 articles.
1. T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573–598.
2. G. Rosen, Minimum value for $c$ in the Sobolev inequality $\left\|\phi^3\right\| \leq c\|\nabla \phi\|^3$, SIAM J. Appl. Math., 21 (1971), 30–32. https://doi.org/10.1137/0121004
3. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013
4. G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincarè Anal., Non Lineairè, 9 (1992), 281–304. https://doi.org/10.1016/S0294-1449(16)30238-4
5. J. Liu, J. F. Liao, C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^{N }$, J. Math. Anal. Appl., 429 (2015), 1153–1172. https://doi.org/10.1016/j.jmaa.2015.04.066