Affiliation:
1. Technology School, Jilin Business and Technology College, Changchun, China
2. School of Information Science and Technology, Northeast Normal University, Changchun, China
Abstract
<abstract>
<p>3D human pose estimation is a hot topic in the field of computer vision. It provides data support for tasks such as pose recognition, human tracking and action recognition. Therefore, it is widely applied in the fields of advanced human-computer interaction, intelligent monitoring and so on. Estimating 3D human pose from a single 2D image is an ill-posed problem and is likely to cause low prediction accuracy, due to the problems of self-occlusion and depth ambiguity. This paper developed two types of human kinematics to improve the estimation accuracy. First, taking the 2D human body skeleton sequence obtained by the 2D human body pose detector as input, a temporal convolutional network is proposed to develop the movement periodicity in temporal domain. Second, geometrical prior knowledge is introduced into the model to constrain the estimated pose to fit the general kinematics knowledge. The experiments are tested on Human3.6M and MPII (Max Planck Institut Informatik) Human Pose (MPI-INF-3DHP) datasets, and the proposed model shows better generalization ability compared with the baseline and the state-of-the-art models.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)