Author:
Huang Jing,Wang Qian,Zhang Rui
Abstract
<abstract><p>Let $ \Delta_1(x; \varphi) $ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the $ k $-th $ (3\leq k\leq5) $ power moments of $ \Delta_1(x; \varphi) $ in short intervals and its asymptotic formula by using large value arguments.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference13 articles.
1. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. publ. Math., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373
2. R. A. Rankin, Contributions to the theory of Ramanujans function $\tau(n)$ and similar arithmetical functions Ⅱ. The order of the Fourier coefficients of integral modular forms, Math. Proc. Cambridge Philos. Soc., 35 (1939), 357–372. https://doi.org/10.1017/S0305004100021101
3. A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47–50.
4. A. Ivić, Large values of certain number-theoretic error terms, Acta Arith., 56 (1990), 135–159. https://doi.org/10.4064/aa-56-2-135-159
5. A. Ivić, K. Matsumoto, Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math. Proc. Cambridge Philos. Soc., 127 (1999), 117–131. https://doi.org/10.1017/S0305004199003564