Single machine Pareto scheduling with positional deadlines and agreeable release and processing times

Author:

Li Shuguang1,Sun Yong1,Khan Muhammad Ijaz23

Affiliation:

1. School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China

2. Department of Mechanical Engineering, Lebanese American University, Beirut 362060, Lebanon

3. Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China

Abstract

<abstract><p>This paper studies the problem of scheduling $ n $ jobs on a single machine to minimize total completion time and maximum cost, simultaneously. Each job is associated with a positional deadline that indicates the largest ordinal number of this job in any feasible schedule. The jobs have agreeable release and processing times, meaning that jobs with larger release times also have larger processing times. The agreeability assumption is reasonable since both the single-criterion problems (without positional deadline constraints) of minimizing total completion time and maximum lateness on a single machine with arbitrary release and processing times are strongly NP-hard. An $ O(n^3) $-time Pareto optimal algorithm is presented. The previously known algorithms only solve two special cases of the agreeability assumption: either the case of equal release times in $ O(n^4) $ time, or the case of equal processing times (without positional deadline constraints) in $ O(n^3) $ time.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference27 articles.

1. H. Hoogeveen, Multicriteria scheduling, Eur. J. Oper. Res., 167 (2005), 592–623. https://doi.org/10.1016/j.ejor.2004.07.011

2. P. Brucker, Scheduling Algorithms, fifth Edition, Springer, 2007. https://doi.org/10.1007/978-3-540-69516-5

3. V. T'kindt, J. C. Billaut, Multicriteria Scheduling: Theory, Models and Algorithms, Springer Verlag, Berlin, 2006.

4. J. K. Lenstra, A. R. Kan, P. Brucker, Complexity of machine scheduling problems, in Annals of Discrete Mathematics, Elsevier, (1977), 343–362. https://doi.org/10.1016/S0167-5060(08)70743-X

5. J. K. Lenstra, A. R. Kan, Complexity of scheduling under precedence constraints, Oper. Res., 26 (1978), 22–35. https://doi.org/10.1287/opre.26.1.22

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3