Hierarchical federated learning with global differential privacy

Author:

Long Youqun1,Zhang Jianhui2,Wang Gaoli1,Fu Jie1

Affiliation:

1. Software Engineering Institute, East China Normal University, Shanghai, China

2. Shandong Luruan Digital Technology Co., Ltd., R & D Center, Jinan, China

Abstract

<abstract><p>Federated learning (FL) is a framework which is used in distributed machine learning to obtain an optimal model from clients' local updates. As an efficient design in model convergence and data communication, cloud-edge-client hierarchical federated learning (HFL) attracts more attention than the typical cloud-client architecture. However, the HFL still poses threats to clients' sensitive data by analyzing the upload and download parameters. In this paper, to address information leakage effectively, we propose a novel privacy-preserving scheme based on the concept of differential privacy (DP), adding Gaussian noises to the shared parameters when uploading them to edge and cloud servers and broadcasting them to clients. Our algorithm can obtain global differential privacy with adjustable noises in the architecture. We evaluate the performance on image classification tasks. In our experiment on the Modified National Institute of Standards and Technology (MNIST) dataset, we get 91% model accuracy-layer HFL-DP, our design is more secure while as being accurate.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3