Abstract
<abstract><p>This paper considers blow-up and global existence for a semilinear space-time fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. We determine the critical exponents of the Cauchy problem when $ \alpha < \gamma $ and $ \alpha\ge \gamma, $ respectively. The results obtained in this study are noteworthy extension to the results of time-fractional differential equation. The critical exponent is consistent with the corresponding Cauchy problem for the time-fractional differential equation with nonlinear memory, which illustrates that the diffusion effect of the third order term is not strong enough to change the critical exponents.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献