Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion

Author:

Ji Shuguan,Li Yanshuo

Abstract

<abstract><p>This paper studied the incompressible Navier-Stokes (NS) equations with nonlocal diffusion on $ \mathbb{T}^d (d \ge 2) $. Driven by a time quasi-periodic force, the existence of time quasi-periodic solutions in the Sobolev space was established. The proof was based on the decomposition of the unknowns into the spatial average part and spatial oscillating one. The former were sought under the Diophantine non-resonance assumption, and the latter by the contraction mapping principle. Moreover, by constructing suitable time weighted function space and using the Banach fixed point theorem, the asymptotic stability of quasi-periodic solutions and the exponential decay of perturbation were proved.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference29 articles.

1. J. R. Mercado, E. P. Guido, A. J. Sánchez-Sesma, M. Íñiguez, A. González, Analysis of the Blasius's formula and the Navier-Stokes fractional equation, in Fluid Dynamics in Physics, Engineering and Environmental Applications, Springer, Berlin, Heidelberg, (2013), 475–480. https://doi.org/10.1007/978-3-642-27723-8_44

2. X. C. Zhang, Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Commun. Math. Phys., 311 (2012), 133–155. https://doi.org/10.1007/s00220-012-1414-2

3. W. A. Woyczyński, Lévy processes in the physical sciences, in Lévy Processes, Birkhäuser, Boston, MA, (2001), 241–266. https://doi.org/10.1007/978-1-4612-0197-7_11

4. J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires (French), Dunod, Paris, 1969.

5. J. C. Mattingly, Y. G. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations, Commun. Contemp. Math., 1 (1999), 497–516. https://doi.org/10.1142/S0219199799000183

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3