Abstract
<abstract><p>In this paper, we define a cohomology theory for differential Lie algebras of any weight. As applications of the cohomology, we study abelian extensions and formal deformations of differential Lie algebras of any weight. Finally, we consider homotopy differential operators on $ \mathrm{L}_{\infty} $ algebras and 2-differential operators of any weight on Lie 2-algebras, and we prove that the category of 2-term $ \mathrm{L}_{\infty} $ algebras with homotopy differential operators of any weight is same as the category of Lie 2-algebras with 2-differential operators of any weight.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. V. E. Coll, M. Gerstenhaber, A. Giaquinto, An explicit deformation formula with noncommuting derivations, Israel Math. Conf. Proc., 1 (1989), 396–403.
2. A. R. Magid, Lectures on Differential Galois Theory, American Mathematical Society, 1994.
3. T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202 (2005), 133–153. https://doi.org/10.1016/j.jpaa.2005.01.010
4. V. Ayala, E. Kizil, I. de Azevedo Tribuzy, On an algorithm for finding derivations of Lie algebras, Proyecciones, 31 (2012), 81–90. https://doi.org/10.4067/S0716-09172012000100008
5. V. Ayala, J. Tirao, Linear control systems on Lie groups and controllability, in Differential Geometry and Control, 64 (1999), 47–64.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献