On the construction of recurrent fractal interpolation functions using Geraghty contractions

Author:

Attia Najmeddine12,Jebali Hajer2

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, PO. Box: 400 Al-Ahsa 31982, Saudi Arabia

2. Analysis, Probability and Fractals Laboratory LR18ES17, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, 5000-Monastir, Tunisia

Abstract

<abstract><p>The recurrent iterated function systems (RIFS) were first introduced by Barnsley and Demko and generalized the usual iterated function systems (IFS). This new method allowed the construction of more general sets, which do not have to exhibit the strict self similarity of the IFS case and, in particular, the construction of recurrent fractal interpolation functions (RFIF). Given a data set $ \{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \} $ where $ I = [x_0, x_N] $, we ensured that attractors of RIFS constructed using Geraghty contractions were graphs of some continuous functions which interpolated the given data. Our approach goes beyond the classical framework and provided a wide variety of systems for different approximations problems and, thus, gives more flexibility and applicability of the fractal interpolation method. As an application, we studied the error rates of time series related to the vaccination of COVID-19 using RFIF, and we compared them with the obtained results on the FIF.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference30 articles.

1. M. F. Barnsley, Fractal functions and interpolation, Constr. Approximation, 2 (1986), 303–329. https://doi.org/10.1007/BF01893434

2. S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. appl., 114 (1986), 185–204. https://doi.org/10.1016/0022-247X(86)90077-6

3. S. Dubuc, Interpolation fractale, in Fractal Geometry and Analysis, (eds. J. Bélais and S. Dubuc), Kluwer Academic Publishers, Dordrecht, 1989.

4. R. Massopust, Fractal functions, fractal surfaces and wavelets, Acad. Press, 1994. https://doi.org/10.1016/B978-0-08-092458-8.50003-4

5. A. K. B. Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/040611070

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3