Abstract
<abstract><p>Let $ \mathscr{B} $ be an extriangulated category which admits a cluster tilting subcategory $ \mathcal{T} $. We firstly introduce notions of $ \mathcal{T} $-cluster tilting subcategories and related subcategories. Then we prove there is a correspondence between $ \mathcal{T} $-cluster tilting subcategories of $ \mathscr{B} $ and support $ \tau $-tilting pairs of $ mod \underline{\Omega(\mathcal{T}}) $, which recovers several main results from the literature. Note that the generalization is nontrivial and we give a new proof technique.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference12 articles.
1. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572–618. https://doi.org/10.1016/j.aim.2005.06.003
2. P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Am. Math. Soc., 358 (2006), 1347–1364. https://doi.org/10.1090/s0002-9947-05-03753-0
3. H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Geom. Differ. Categ., 60 (2019), 117–193.
4. Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005
5. T. Zhao, Z. Huang, Phantom ideals and cotorsion pairs in extriangulated categories, Taiwan. J. Math., 23 (2019), 29–61. https://doi.org/10.11650/TJM/180504