Affiliation:
1. National Engineering Research Center of Advanced Road Materials, JSTI Group, Nanjing, Jiangsu 210017, China
2. Nanjing Municipal Bureau of Science and Technology, Nanjing, Jiangsu 210008, China
Abstract
<abstract>
<p>In order to effectively mitigate the deterioration of pavement and roadbed, the need for extensive repairs and costly reconstruction ought to be minimized. Hence, this study introduces a novel approach towards long-term preservation of asphalt pavement, which conducts in-depth research on pavement maintenance decision-making using the decision tree method. The selection of appropriate decision-making indicators is based on their respective significance and the actual maintenance requirements, from which a comprehensive decision model for asphalt pavement maintenance is developed. By employing the Analytic Hierarchy Process (AHP) and a network-level optimization decision-making approach, this study investigates the allocation of maintenance decisions, structural preservation, optimal combinations of maintenance strategies, and fund allocation schemes. The result is the development of a project-level and network-level structural preservation decision optimization method. Furthermore, a decision-making module is designed to accompany this method, facilitating the visualization of comprehensive data and decision-making plans. This module enhances the effectiveness and efficiency of the decision-making process by providing a user-friendly interface and a clear presentation of data-driven insights and decision outcomes. The case study clearly proved the applicability and rationality of the long-term preservation strategy of structures based on intelligent decision-making, which laid the foundation for the sustainable development of pavement maintenance and development.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference38 articles.
1. S. A. Mitoulis, D. V. Bompa, S. Argyroudis, Sustainability and climate resilience metrics and trade-offs in transport infrastructure asset recovery, Transp. Res. Part D Transp. Environ., 121 (2023), 103800. https://doi.org/10.1016/j.trd.2023.103800
2. N. S. P. Peraka, K. P. Biligiri, Pavement asset management systems and technologies: a review, Autom. Constr., 119 (2020), 103336. https://doi.org/10.1016/j.autcon.2020.103336
3. B. Yu, X. Gu, F. Ni, R. Guo, Multi-objective optimization for asphalt pavement maintenance plans at project level: integrating performance, cost and environment, Transp. Res. Part D Transp. Environ., 41 (2015), 64–74. https://doi:10.1016/j.trd.2015.09.016" target="_blank">10.1016/j.trd.2015.09.016">https://doi:10.1016/j.trd.2015.09.016
4. D. Jorge, A. Ferreira, Road network pavement maintenance optimisation using the HDM-4 pavement performance prediction models, Int. J. Pavement Eng., 13 (2012), 39–51. https://doi.org/10.1080/10298436.2011.563851
5. A. Kazemeini, O. Swei, Identifying environmentally sustainable pavement management strategies via deep reinforcement learning, J. Cleaner Prod., 390 (2023), 136124. https://doi:10.1016/j.jclepro.2023.136124
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献