Recognition of adherent polychaetes on oysters and scallops using Microsoft Azure Custom Vision

Author:

Kim Dong-hyeon1,Choe Se-woon2,Zhang Sung-Uk1

Affiliation:

1. Digital Twin Laboratory, Dong-Eui University, 176 Eomgwangro, Busanjin-gu, Busan 47340, Korea

2. Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongsangbukdo 39253, Korea

Abstract

<abstract> <p>Oyster and scallop cultures have high growth rates in the Korean aquaculture industry. However, their production is declining because of the manual selection of polychaete-adherent oysters and scallops. In this study, an artificial intelligence model for automatic selection of polychaetes was developed using Microsoft Azure Custom Vision to improve the productivity of oysters and scallops. A camera booth was built to capture images of oysters and scallops from various angles. Polychaetes in the images were tagged. Transfer learning available with Custom Vision was performed on the acquired images. By repeating the training and evaluation, the number of training images was increased by analyzing the precision, recall, and mean average precision using the Compact [S1] and General [A1] domains of Custom Vision. This paper presents the artificial intelligence model developed for the automatic selection of polychaete-adherent oysters and scallops as well as the optimal model development method using Microsoft Azure Custom Vision.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3