Dynamic analysis of a stochastic epidemic model incorporating the double epidemic hypothesis and Crowley-Martin incidence term

Author:

Li Wenxuan,Liu Suli

Abstract

<abstract><p>The host population in epidemiology may actually be at risk of more than two infectious diseases with stochastic complicated interaction, e.g., HIV and HBV. In this paper, we propose a class of stochastic epidemic model that applies the double epidemic hypothesis and Crowley-Martin incidence rate in order to explore how stochastic disturbances affect the spread of diseases. While disregarding stochastic disturbances, we examine the dynamic features of the system in which the local stability of equilibria are totally determined by the basic reproduction numbers. We focus particularly on the threshold dynamics of the corresponding stochastic system, and we obtain the extinction and permanency conditions for a pair of infectious diseases. We find that the threshold dynamics of the deterministic and stochastic systems vary significantly: (ⅰ) disease outbreaks can be controlled by appropriate stochastic disturbances; (ⅱ) diseases die out when the intensity of environmental perturbations is higher. The effects of certain important parameters on deterministic and stochastic disease transmission were obtained through numerical simulations. Our observations indicate that controlling epidemics should improve the effectiveness of prevention measures for susceptible individuals while improving the effectiveness of treatment for infected individuals.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3