Quantization of Hamiltonian and non-Hamiltonian systems

Author:

Rashkovskiy Sergey A.

Abstract

<abstract> <p>The quantization process was always tightly connected to the Hamiltonian formulation of classical mechanics. For non-Hamiltonian systems, traditional quantization algorithms turn out to be unsuitable. Numerous attempts to quantize non-Hamiltonian systems have shown that this problem is nontrivial and requires the development of new approaches. In this paper, we present the quantization methods that do not depend upon the Hamiltonian formulation of classical mechanics. Two approaches to the quantization of mechanical systems are considered: axiomatic and hydrodynamic. It is shown that the formal application of these approaches to the classical Hamilton-Jacobi theory allows obtaining the wave equation for the corresponding quantum system in natural way. Examples are considered that show the effectiveness of the proposed approaches, both for Hamiltonian and non-Hamiltonian systems. The spinor form of the relativistic Hamilton-Jacobi theory for classical particles is considered. It is shown that it naturally leads to the Dirac equation for the corresponding quantum particle and to its non-Hamiltonian generalization, the bispinor relativistic Kostin equation.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3