Abstract
<abstract>
<p>The quantization process was always tightly connected to the Hamiltonian formulation of classical mechanics. For non-Hamiltonian systems, traditional quantization algorithms turn out to be unsuitable. Numerous attempts to quantize non-Hamiltonian systems have shown that this problem is nontrivial and requires the development of new approaches. In this paper, we present the quantization methods that do not depend upon the Hamiltonian formulation of classical mechanics. Two approaches to the quantization of mechanical systems are considered: axiomatic and hydrodynamic. It is shown that the formal application of these approaches to the classical Hamilton-Jacobi theory allows obtaining the wave equation for the corresponding quantum system in natural way. Examples are considered that show the effectiveness of the proposed approaches, both for Hamiltonian and non-Hamiltonian systems. The spinor form of the relativistic Hamilton-Jacobi theory for classical particles is considered. It is shown that it naturally leads to the Dirac equation for the corresponding quantum particle and to its non-Hamiltonian generalization, the bispinor relativistic Kostin equation.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3 (3rd ed.), Pergamon Press, 1977.
2. A. Messiah, Quantum Mechanics, Dover Publications Inc., New York, 1999.
3. E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079–1085. https://doi.org/10.1103/PhysRev.150.1079
4. M. J. W. Hall, M. Reginatto, Schrödinger equation from an exact uncertainty principle, J. Phys. A, 35 (2002), 3289–3303. https://doi.org/10.1088/0305-4470/35/14/310
5. L. Fritsche, M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics, Ann. Phys. (Leipzig), 12 (2003), 371–403. https://doi.org/10.1002/andp.200310017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献