Designing an energy management system for household consumptions with an off-grid hybrid power system

Author:

Elweddad Mohamed,Güneşer Muhammet,Yusupov Ziyodulla

Abstract

<abstract> <p>This paper analyzes the effect of meteorological variables such as solar irradiance and ambient temperature in addition to cultural factors such as consumer behavior levels on energy consumption in buildings. Reducing demand peaks to achieve a stable daily load and hence lowering electricity bills is the goal of this work. Renewable generation sources, including wind and Photovoltaics systems (PV) as well as battery storage are integrated to supply the managed home load. The simulation model was conducted using Matlab R2019b on a personal laptop with an Intel Core i7 with 16 GB memory. The model considered two seasonal scenarios (summer and winter) to account for the variable available energy sources and end-user electric demand which is classified into three demand periods, peak-demand, mid-demand, and low-demand, to evaluate the modeled supply-demand management strategy. The obtained results showed that the surrounding temperature and the number of family members significantly impact the rate of electricity consumption. The study was designed to optimize and manage electricity consumption in a building fed by a standalone hybrid energy system.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3