An innovative extended Bayesian analysis of the relationship between returns and different risk measures in South Africa

Author:

Dwarika Nitesha

Abstract

<abstract> <p>This study investigated the All Share Index (ALSI) returns and six different risk measures of the South African market for the sample period from 17 March 2000 to 17 March 2022. The risk measures analyzed were standard deviation (SD), absolute deviation (AD), lower semi absolute deviation (LSAD), lower semivariance (LSV), realized variance (RV) and the bias-adjusted realized variance (ARV). This study made an innovative contribution on a methodological and practical level, by being the first study to extend from the novel Bayesian approach by Jensen and Maheu (2018) to methods by Karabatsos (2017)—density regression, quantile regression and survival analysis. The extensions provided a full representation of the return distribution in relation to risk, through graphical analysis, producing novel insight into the risk-return topic. The most novel and innovative contribution of this study was the application of survival analysis which analyzed the "life" and "death" of the risk-return relationship. From the density regression, this study found that the chance of investors earning a superior return was substantial and that the probability of excess returns increased over time. From quantile regression, results revealed that returns have a negative relationship with the majority of the risk measures—SD, AD, LSAD and RV. However, a positive risk-return relationship was found by LSV and the ARV, with the latter having the steepest slope. Results were the most pronounced for the ARV, especially for the survival analysis. While ARV earned the highest returns, it had the shortest lifespan, which can be attributed to the volatile nature of the South African market. Thus, investors that seek short-term high-earning returns would examine ARV followed by LSV, whereas the remaining risk measures can be used for other purposes, such as diversification purposes or short selling.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Development,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3