Affiliation:
1. Department of Vehicle and Energy Conversion Engineering, School of mechanical engineering, Hanoi University of Science and Technology, Vietnam
2. Department of Automotive Engineering, Hanoi University of Industry, Vietnam
3. Faculty of Vehicle and Energy Engineering, Phenikaa University, Vietnam
Abstract
<abstract>
<p>In general, as compared to conventional combustion engines, the homogeneous charge compression ignition (HCCI) engine offers better fuel efficiency, NOx, and particulate matter emissions. The HCCI engine, on the other hand, is not connected to the spark plugs or the fuel injection system. This implies that the auto-ignition time and following combustion phase of the HCCI engine are not controlled directly. The HCCI engine will be confined to a short working range due to the cold start, high-pressure rate, combustion noise, and even knocking combustion. Biofuel innovation, such as ethanol-powered HCCI engines, has a lot of promise in today's car industry. As a result, efforts must be made to improve the distinctive characteristics of the engine by turning the engine settings to different ethanol mixtures. This study examines the aspects of ethanol-fueled HCCI engines utilizing homogenous charge preparation procedures. In addition, comparing HCCI engines to other advanced combustion engines revealed their increased importance and prospective consequences. Furthermore, the challenges of transitioning from conventional to HCCI engines are examined, along with potential answers for future upgrade approaches and control tactics.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献