A design and performance prediction method for small horizontal axis wind turbines and its application

Author:

Musau Stephen K., ,Stahl Kathrin,Volkmer Kevin,Kaufmann Nicholas,Carolus Thomas H., ,

Abstract

<abstract> <p>The paper deals with small wind turbines for grid-independent or small smart grid wind turbine systems. Not all small turbine manufacturers worldwide have access to the engineering capacity for designing an efficient turbine. The objective of this work is to provide an easy-to-handle integrated design and performance prediction method for wind turbines and to show exemplary applications.</p> <p>The underlying model for the design and performance prediction method is based on an advanced version of the well-established blade-element-momentum theory, encoded in MATLAB™. Results are (i) the full geometry of the aerodynamically profiled and twisted blades which are designed to yield maximum power output at a given wind speed and (ii) the non-dimensional performance characteristics of the turbine in terms of power, torque and thrust coefficient as a function of tip speed ratio. The non-dimensional performance characteristics are the basis for the dimensional characteristics and the synthesis of the rotor to the electric generator with its load.</p> <p>Two parametric studies illustrate typical outcomes of the design and performance prediction method: A variation of the design tip speed ratio and a variation of the number of blades. The predicted impact of those parameters on the non-dimensional performance characteristics agrees well with common knowledge and experience.</p> <p>Eventually, an interplay of various designed turbine rotors and the given drive train/battery charger is simulated. Criterions for selection of the rotor are the annual energy output, the rotor speed at design wind speed as well as high winds, and the axial thrust exerted on the rotor by the wind. The complete rotor/drive train//battery charger assembly is tested successfully in the University of Siegen wind tunnel.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference26 articles.

1. European Commission, FP 7. Available from: https://cordis.europa.eu (assessed April 08, 2020).

2. RenewableUK, Small Wind Turbine Standard (15 January, 2014). Available from: https://mcscertified.com/wp-content/uploads/2019/08/RenewableUK-Small-Wind-Turbine-Standard-2014-01-05.pdf (assessed April 04, 2020).

3. Jütemann P, Kleinwind-Marktreport 2020. Available from: http://www.Klein-Windkraftanlagen.com ((assessed April 04, 2020).

4. ARGE Lichtenegg, Wien, Austria. Available from: http://www.energieforschungspark.at (assessed April 04, 2020).

5. Kaufmann N, "Small Horizontal Axis Free-Flow Turbines for Tidal Currents, " ISBN 978-3-8440-6705-7. Shaker-Verlag Düren, 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Small Horizontal-Axis Wind Turbines;Arabian Journal for Science and Engineering;2023-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3