A novel binary genetic differential evolution optimization algorithm for wind layout problems

Author:

Liu Yanting1,Xu Zhe2,Yu Yongjia1,Chang Xingzhi1

Affiliation:

1. Changzhou College of Information Technology, Changzhou, 213032 China

2. School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032 China

Abstract

<abstract><p>This paper addresses the increasingly critical issue of environmental optimization in the context of rapid economic development, with a focus on wind farm layout optimization. As the demand for sustainable resource management, climate change mitigation, and biodiversity conservation rises, so does the complexity of managing environmental impacts and promoting sustainable practices. Wind farm layout optimization, a vital subset of environmental optimization, involves the strategic placement of wind turbines to maximize energy production and minimize environmental impacts. Traditional methods, such as heuristic approaches, gradient-based optimization, and rule-based strategies, have been employed to tackle these challenges. However, they often face limitations in exploring the solution space efficiently and avoiding local optima. To advance the field, this study introduces LSHADE-SPAGA, a novel algorithm that combines a binary genetic operator with the LSHADE differential evolution algorithm, effectively balancing global exploration and local exploitation capabilities. This hybrid approach is designed to navigate the complexities of wind farm layout optimization, considering factors like wind patterns, terrain, and land use constraints. Extensive testing, including 156 instances across different wind scenarios and layout constraints, demonstrates LSHADE-SPAGA's superiority over seven state-of-the-art algorithms in both the ability of jumping out of the local optima and solution quality.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3