A chaotic Jaya algorithm for environmental economic dispatch incorporating wind and solar power

Author:

Chaudhary Vishal1,Dubey Hari Mohan2,Pandit Manjaree1,Salkuti Surender Reddy3

Affiliation:

1. Department of Electrical Engineering, MITS Gwalior 474005, India

2. Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, India

3. Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Republic of Korea

Abstract

<abstract> <p>The integration of renewable energy resources (RESs) into the existing power grid is an effective approach to reducing harmful emission content. Environmental economic dispatch is one of the complex constrained optimization problems of power systems. These problems have become more complex as a result of integrating RESs, as the availability of solar and wind power is stochastic in nature. To obtain the solution of such types of complex constrained optimization problems, a robust optimization method is required. Literature shows that chaotic maps help to boost the search capability through improvisation in the exploration and exploitation phases of an algorithm; hence, they are able to provide superior solutions during optimization. Therefore, in this study, a new optimization technique was developed based on the Jaya algorithm called the chaotic Jaya algorithm. Here the main aim was to investigate the impact of RES integration into conventional thermal systems on total power generation cost and emissions released to the environment. The proposed approach was tested for two standard cases: (i) scheduling of a committed generating unit for a specific time and (ii) scheduling of a committed generating unit for a time period of 24 hours with 24 intervals of 1 hour each. The simulation results show that a tent map is the best-performing map for a sample problem under consideration, as it provides better results. Hence, it has been considered for detailed analysis.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3