Diagnosing faults in a photovoltaic system using the Extra Trees ensemble algorithm

Author:

Toche Tchio Guy M.1,Kenfack Joseph2,Voufo Joseph2,Abessolo Mindzie Yves2,Fouedjou Njoya Blaise2,Ouro-Djobo Sanoussi S.13

Affiliation:

1. Regional Center of Excellence for Electricity Management (CERME), University of Lomé, Togo

2. Laboratory on Small hydropower and hybrid systems, National Advanced School of Engineering of Yaoundé (NASEY), University of Yaoundé 1, Cameroon

3. Solar Energy Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, Togo

Abstract

<p>The application of machine learning techniques for monitoring and diagnosing faults in photovoltaic (PV) systems has been shown to enhance the reliability of PV power generation. This research introduced a novel machine learning classifier for fault diagnosis in PV systems, utilizing an ensemble algorithm known as extra trees (ETC). The study initially proposed a system with two PV modules and developed a low-cost Arduino-based data logger to gather data from the PV system in free-fault and faulty conditions. Subsequently, the study evaluated six other advanced classifiers for fault diagnosis in PV systems, namely logistic regression (LR), k-nearest neighbor (kNN), support vector machine (SVM), decision tree (DT), AdaBoost, and random forest (RF) models using the collected data from the proposed PV system. The assessment of the various models' performance indicated that the extra trees model exhibits superior classification capabilities for partial shading (PS), open circuit (OCF), partial shading with bypass diode disconnected (PSBD), and combined partial shading with bypass diode disconnected plus open circuit (PSBDOC) faults. The results demonstrated that the new ETC classifier achieves an accuracy of 92%, surpassing the 91%, 87%, 7%, and 59% accuracy of the RF, DT, kNN, and LR classifiers, respectively. This highlights the effectiveness of the extra trees model in enhancing fault detection and classification by distinguishing between open circuits and twin faults. Consequently, these results can be utilized to develop advanced diagnostic tools for photovoltaic systems, thereby improving the reliability of solar technology and accelerating the rate of installation.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3