Thermal energy storage using phase-change material in evacuated-tubes solar collector

Author:

Al-Abdali Akthem Mohi,Ammari Handri

Abstract

<abstract> <p>The use of phase change materials in solar thermal collectors improves their thermal performance significantly. In this paper, a comparative study is conducted systematically between two solar receivers. The first receiver contains paraffin wax, while the other does not. The goal was to find out to which degree paraffin wax can enhance the energy storage and thermal efficiency of evacuated tubes solar collectors. Measurements of water temperature and solar radiation were recorded on a few days during August of 2021. The experimental analysis depended on two stages. The first stage had a flow rate of 7 L/hr, and the second stage had no flow rate. A flow rate of 7 L/hr gave an efficiency of 47.7% of the first receiver with phase-change material, while the second conventional receiver had an efficiency rate of 40.6%. The thermal efficiency of the first receiver during the day at which no flow rate was applied was 41.6%, while the second one had an efficiency rate of 35.2%. The study's significant results indicated that using paraffin wax in solar evacuated tube water-in-glass thermal collectors can enhance their thermal energy storage by about 8.6% and efficiency by about 7%. Moreover, the results revealed that the solar thermal collector containing paraffin wax had an annual cost of 211 USD/year. At the same time, the receiver's yearly fuel cost was 45 USD. Compared to an electrical geyser, the annual cost reached 327 USD, with an annual fuel cost equaled 269 USD. The first receiver's payback period was 5.35 years.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3