Development of wind and solar systems for power charging: An application of an electric vehicle to grid systems

Author:

Soomro Mansoor1,Shaikh Zeeshan Ali1,Baloch Mazhar2,Shaikh Abdul Manan2,Chauhdary Sohaib Tahir3

Affiliation:

1. Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan

2. College of Engineering, A'Sharqiyah University, 400, Ibra Oman

3. Department of Electrical & Computer Engineering, College of Engineering, Dhofar University, Salalah 211, Oman

Abstract

<abstract> <p>In response to escalating environmental concerns driven by greenhouse gas emissions, Pakistan, amid accelerated climate change and deteriorating air quality, struggles with power crisis. Our purpose of this research was to develop a pivotal strategy to address the power crisis and provide clean transportation facilities by involving power transitioning from fossil fuel vehicles to electric vehicles (EVs). We aimed to establish EV charging stations powered by renewable sources like solar and wind energy using grid to vehicle (V2G) mechanism. Utilizing MATLAB Simulink, an optimal electric vehicle charging system with a Level 2 fast charging mechanism was designed, aiming to significantly reduce greenhouse gas emissions from both the transportation and energy sectors. This framework aligned with global trends in climate change mitigation, providing developing countries like Pakistan with a practical solution. The results indicated a 10-kW, AC power output at 240 V coupled with an ideal 50 kWh EV battery rating, which was achieved for EV charging. The output parameters, including current voltage and power output of solar PV, micro wind, and battery levels, were used before and after the incorporation of a boost converter. Consequently, the application of a boost converter and proportional integral (PI) controller resulted in low overshoot and steady state output parameters of the proposed system. Also, the battery backup helped to optimize the power output for load driven EVs.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3