Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique

Author:

Kaur Sunimerjit1,Brar Yadwinder Singh2,Dhillon Jaspreet Singh3

Affiliation:

1. Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India

2. vElectrical Engineering Department, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India

3. Electrical and Instrumentation Engineering Department, Sant Longowal Institute of Engineering and Technology, Sangrur 148106, Punjab, India

Abstract

<abstract> <p>The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ \alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ \alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ \alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3