Energy saving potential diagnosis for Moroccan university campuses

Author:

Ouhammou Badr1,Gargab Fatima Zohra2,El idrissi kaitouni Samir3,Smouh Slimane4,El mrabet Rachid5,Aggour Mohammed1,Jamil Abdelmajid2,Kousksou Tarik6

Affiliation:

1. Faculty of Science of Kenitra, Ibn Tofail University, Morocco

2. Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, Morocco

3. Green Energy Park, Benguerir, Morocco

4. High School of Technology, Faculty of Sciences, Moulay Ismail University of Meknes, Km 5, Agouray Street P1, Meknes 50040, Morocco

5. Marafik Berkane campany, Berkane city, Morocco

6. Laboratory of Engineering Sciences Applied to Mechanics and Electrical Engineering (SIAME), University of Pau and Pays de l'Adour/E2S UPPA, EA4581, 64000, Pau, France

Abstract

<abstract> <p>Public buildings are energy-intensive users, especially when energy management is lacking. More than ever, the use of energy efficiency strategies and renewable energy sources (RES) in buildings are a national priority for Morocco in order to improve energy self-sufficiency, replace fossil fuel use and lower energy bills and greenhouse gas emissions. Relating to the exemplarity of the Moroccan government in terms of energy efficiency and sustainable development, the study support that aim and presents results of a deep energy performance analysis of more than 20 university campuses across Morocco, which has concluded that around 80% of the energy consumed in the university campuses is designated for lightning and hot water for sanitary use. Later, this study examined the potential for energy saving and the environmental benefits of implementing actions to reduce energy demand from the grid, considering the use of on-site solar energy. Thereafter, the study aimed to analyze the impact of RES integration in public university campuses, namely the photovoltaic (ESM1) for electricity output and solar thermal system for hot water use (ESM2), to assess the techno-economic-environmental performance on building energy consumption reduction. Hence, the paper reported a detailed energetic-economic and environmental (3E) analysis simulation for campuses by integration of the two Energy Saving Measurements (ESM). The results showed that the integration of ESM1 system can reduce the annual energy demand by 22% and the energy bill by 34%, whereas the integration of ESM2 achieved 67% in energy saving. According to the analysis of the results, the integration of ESM1 is expected to save 6044 MWh of electrical energy annually on the 30222 MWh for all campuses and 2559 MWh for ESM2 which is equivalent to 284 m<sup>3</sup>/yr of diesel. With the reduced energy consumption, it is possible to cut down fossil fuels for electricity production and offset greenhouse gas emissions by 672 tons of carbon dioxide annually. Besides, the evaluation of results showed that the energy performance indicator was reduced from 530 kWh/bed /yr to 248 kWh/bed/yr, which represents 56% of energy saving.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3