Experimental study of a natural draft hybrid (wet/dry) cooling tower with a splash fill type

Author:

Ali Abdullah Kadhlm1,Mohammed Ahmed Qassem1,Mahdi Qasim Selah2

Affiliation:

1. Middle Technical University, Engineering Technical College, Mech. Eng. Dept. IRAQ, Baghdad

2. Mustansiriyah University/College of Engineering, Mech. Eng. Dept. IRAQ, Baghdad

Abstract

<abstract> <p>Cooling towers have such a significant influence on work and efficiency that researchers and designers are working tirelessly to enhance their performance. A prototype design for a natural draft hybrid (wet/dry) cooling tower has been created, relying on geometrical, dynamic, and thermodynamic similarities. Based on Iraqi weather, experiments have been conducted using splash fill (150 mm) in summer (hot and dry) weather conditions. This study investigated heat transfer mechanisms of both air and water in a natural draft hybrid cooling tower model(NDHCTs), both directly (wet section) and indirectly (dry section). The tower is filled with splash-style packing, and the warm water is spread throughout the building using sprayer nozzles. The influences of water flow rates, fill thickness, and air velocity on the cooling range, approach, cooling capacity, thermal efficiency of the cooling tower, water evaporation loss into the air stream and water loss percentage were explored in this study. The experimental were carried out with four different water flow rates, ranging from 7.5 to 12 (Lpm) litres per minute, and eight different air velocities, all while keeping a constant inlet water temperature and a zero (m/s) crosswind. Data has been gathered, and performance variables have been determined. The findings demonstrate that the cooling tower's efficacy increases when the water flow rate is low, and the cooling range increases with increasing air velocity and decreases with increasing water flow rate; for a 7.5 Lpm water flow rate and a 2.4 m/s air velocity, it expanded to 19.5 ℃. The cooling capacity increased to 23.2 kW for a water flow rate of 12 Lpm and an air velocity of 2.4 m/s.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3